

IMMUNOGENETICS AND PHARMACOGENOMICS OF ALLERGIC DISEASES

CLARA GORODEZKY

Head of the Dept. of Immunology & Immunogenetics, InDRE Fundacion Comparte Vida, A.C. Mexico City

> XXII World Allergy Congress Cancún, México December 4-8, 2011

Allergic Diseases and Associated phenotypes are polygenic & multifactorial

NOT EVERYTHING IS GENETICS!

- 1. All features result of the interaction between environment and host genetics
- 2. The relationship patient-physician is relevantLa
- 3. More than diseases, there are patients, each of them with their own way of responding vs. The same unchaining agent
 Genetic control of the immune response

The Development of Allergic Diseases

The development of these diseases represent an interaction between genetic and environmental processes, which may be influenced by age

Allergic Disease (Many phenotypes)

Approaches for Gene Discovery

Candidate gene association studies (1970s-present)

- Advantages: Hypothesis-driven; easy to interpret; detects genes with modest effects
- Disadvantages: Limited to what we know; Cannot discover novel genes or pathways; Requires LD between markers and causal agents

Genome-wide linkage studies (1980-1990s) Advantages:Genome-wide; Can discover novel genes & pathways; Requires relatively few genetic markers; Does not rely on LD; Can detect genes harboring rare risk variants Disadvantages: Requires families; Poor resolution; Low power to detect genes with modest effects

Genome-wide association studies (2007-present) Advantages:Genome-wide; can discover novel genes & pathways; Excellent resolution; Can detect loci with modest effects Disadvantages: Requires dense marker typing & large sample sizes; Requires LD; Limited to common variants

Re-sequencing in genes, exomes, or whole genomes (ongoing) Advantages:Reveals all variations Disadvantags: Costly; Large sample sizes; Computationally & analitically challenging; Difficult to interpret Single nucleotide variant

Insertion-deletion variant

Block substitution

Inversion variant

Copy number variant

ATTGGCCTTAACCCCCGATTATCAGGAT ATTGGCCTTAACCCCCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT ATTGGCCTTAACCC

ATTGGCCTTAACCCCGATTATCAGGAT ATTGGCCTTAACAGTGGATTATCAGGAT

ATTGGCCTT<mark>AACCCCCG</mark>ATTATCAGGAT ATTGGCCTT<mark>CGGGGGGTT</mark>ATTATCAGGAT

ATT<mark>GGCCTTAGGCCTTA</mark>ACCCCCGATTATCAGGAT ATT<mark>GGCCTTA----</mark>ACCTCCGATTATCAGGAT

Nature Reviews | Genetics

Prof. Jean Dausset †, June 6, 2009

The Human MHC : HLA July, 2011

Total alleles = 6403 Proteins= 4174

SOME GENES INVOLVED IN THE EXPRESSION OF ALLERGIC DISEASES

Willian Cookson, Nature 402: 88, 1999

Combined Results of Meta-Analyses of Asthma GWAS in European, African Caribbean & Latino Samples (EVE) & European Samples (Gabriel)

GENE/REGION 17q21(ORMDL3/GSDML IL1RL1/IL18R1 (chr. 2) **TSLP** (chr. 5) L33 (chr 9) (chr. 15) SMAD3 RORA (chr. 15) HLA-DQ (chr. 6) PYHINI (chr 1) (chr. 22) **L2RB SLC22A5** (chr 5) **L13** (chr 5)

RACE/ETHNIC GROUPS Euro, Euro-Am, Euro, Euro-Am Afr-Am/Afr.Caribb Euro Euro Euro Ober & vao. 2011

EPITOPES OF DIFFERENT ALLERGENS

Antigens		Allergen	Size	T-cell Epitope
Dust				
Dermatophagoides pteronyssinus		Der p 1 Der p 1 Der p 1	24 kDa,222 aa	45-6794-104,117-143 110-119, 110-131 1-4,1-56,15-94,57-130
	(5 different)	Der p 2	15 kDa,129 aa	1-15,11-24,20-33,29-42
Felis domesticus		Fel d 1	17 kDa, 70+92 aa	39-52,53-66 9-21,22-35,57-70
		Fel d 1	(dímero)	
Seasonal				
Betula verucosa	(4 different)	Bet vI	17 kDa, 159 a	a
<i>Lolium perene Phleum partense</i> Poa pratensis	(4 different)	Lol p 1 Phl p 1 rKBG60	34 kDa,240 aa 34 kDa,240 aa 28 kDa,268 aa	I I I
Venoms (insec	ts)			
Apis mellifera Bee		Api m 1(PLA ₂) Api m 1(PLA ₂)) 19 kDa,134	αα
Food				
Chicken		Ovalbumin	43 kDa,385	٥٥
		van	Nerven v col. Ti	rends Immunol: 2007

CHRISTALOGRAFHIC STRUCTURE OF BETUL BIRCH POLLEN

Class II Molecule

HLA Associated Genetic Control of the IgE Immune Response to Allergens				
Allergen	Mol. Mass.	HLA IgE+	(%) O	R
Amb a 5	5	DR2	100	65
Lol p 2	11	DR3	47	5.3
Lol p 3	11	DR3	43	3.5
Lol p 3	11	DR3	57	18
Amb a 6	11.5	DR5	85	35
Amb a 6	11.5	DR5	40	23
Alt a 1	14	DR4	26	1.9
Der p 2	15	DR3	19	>1
Bet v 1	17	DR52	62	2.5
Bet v 1	17	DRB3*0	101 51	2.5
Fel d 1 Der p 1	17 24	DR1 DR3	16 16	2.0 <1
Lolp1 Lolp1	34	DR3 DR3	36	7.3 3.1

HLA Genes Associated With The Immune Response To Cedar Pollen In Japanese

Susceptibility is linked to a recessive gen that has a high penetrance (0.54)

Sesistence is linked to a dominant HLA-DQ gene with a higher penetrance (0.778)

Strategies of Immune Modulation in Allergy The common goal is to decrease Th2 responses that lead to allergic disease!

PHARMACOGENOMICS

PHARMACOLOGY

GENOMICS

¿DO ALL INDIVIDUALS RESPOND THE SAME WAY TO DRUG TREATMENTS ?

????

PHARMACOGENOMICS

Study and analysis of the individual genetic variability, related to:

drug response

drug design and development

therapeutic design to achieve successful results in clinical assays

 more effective and less dangerous therapies for the patient Pharmacogenetics Vs. Pharmacogenomics

Interaction of our Genes with the Environment

INDIVIDUAL RISK: DRUG INEFFICACY/TOXICITY

GENES + ENVIRONMENTAL FACTORS INTERACTIONS

Gender, ethnicity, diet, nutrition, función organic function, drug interaction, tobacco, cofee & alcohol intake, concomitant diseases, disease severity

•GENETIC FACTORS

The most important are.....

MHC, Receptor, Transport & other genes & drug metabolizing enzymes (DMEs)

(15 a 30%-95%)

INTER-INDIVIDUAL VARIATION TO DRUG RESPONSES

Non efficacy of Treatment: 25-80%
 Efficacy 51.5%

Spear et al;2001. Trends Mol Med 7:201

•Adverse Drug Reactions (ADR) USA (1994)

6.7% hospitalization (2,216,000 patients)0.32% Fatal reactions (106,000 patients)4-6 Deaths

Lazarou et al. 1998; JAMA 279:1200

Examples of Associations between Drug Response and Genetic Variants

Table 2. Examples of Associations between Drug Response and Genetic Variants*

Drug	Variable Clinical Effect	Genes with Associated Variants	Possible Mechanism
Azathioprine and mercaptopurine	Bone marrow aplasia Reduced therapeutic effect at standard doses	ТРМТ	Hypofunctional alleles Wild-type alleles
Some antidepressants and β -blockers	Increased side effect risk Decreased efficacy	CYP2D6	Hypofunctional alleles Gene duplication
Omeprazole	Helicobacter pylori cure rate	CYP2C19	Hypofunctional alleles
Irinotecan	Neutropenia	UGT1A1	Decreased expression due to regulatory polymorphism
HIV protease inhibitors	Central nervous system levels	MDR1	Altered P-glycoprotein function
β-blockers	Blood pressure lowering and heart rate slowing	ADRB1	Altered receptor function or number
Inhaled β_2 -agonists	Bronchodilation	ADRB2	Altered receptor function or number
Diuretics	Blood pressure lowering	ADD1	Altered cytoskeletal function by adducin variants
Warfarin	Anticoagulation	VKORC1	Variant haplotypes in regulatory regions leading to variable expression
		СҮР2С9	Coding region variants causing reduced S-warfarin
Abacavir	Immunologic reactions	HLA variants	Altered immunologic responses
QT-prolonging antianhythmics	Brug-induced anhythmia	ion-channel genes	Exposure of subclinical reduction in repolarizing currents by drugs
General anesthetics	Malignant hyperthermia	RYR1	Anesthetic-induced increased release of sarcoplasmic reticulum calcium by mutant channels
Inhaled steroids	Bronchodilation	CRHR1	Unknown
HMG-CoA reductase inhibitors (statins)	Low-density lipoprotein cholesterol lowering	HMGCR	Altered HMG-CoA reductase activity

* ADD1 = the gene encoding α -adducin; ADRB1 = the gene encoding the β_1 -adrenergic receptor; ADRB2 = the gene encoding the β_2 -adrenergic receptor; CRHR1 = the gene encoding corticotrophin-releasing hormone receptor-1; CYP2C19 = the gene encoding the 2C19 cytochrome P450 isoform; CYP2C9 = the gene encoding the 2D6 cytochrome P450 isoform; CYP2D6 = the gene encoding the 2D6 cytochrome P450 isoform; HMG-CoA = 3-hydroxy-3-methylglutaryl coenzyme A; HMGCR = the gene encoding HMG-CoA reductase; MDR1 = the gene encoding P-glycoprotein; RYR1 = the gene encoding the skeletal muscle calcium-release channel; TPMT = the gene encoding thiopurine methyltransferase; UGT1A1 = the gene encoding uridine diphosphate glycosyltransferase 1 family, polypeptide A1; VKORC1 = the gene encoding vitamin K epoxide reductase complex, subunit 1.

Roden, D. M. et. al. Ann Intern Med 2006;145:749

Annals of Internal Medicine

Table 1. US FDA or B	MEA drug pharmaco	genomic labeling: constitutive ge	enetic variants.
Drug	Gene target	Information	Outcome
Thioridazine	CYP2D6	ADRs: W&P Test not required	QT prolongation, torsades de pointes
Codeine	CYP2D6	ADRs: W&P Test not required	Apnea among children from breastfeeding mothers
Atomoxetine	CYP2D6	ADRs: W&P Test not required	Dose reduction for PMs
Tamoxifene	CYP2D6-CYP2C19	Lower response rate: W&P Test not required	Loss of efficiency among PMs and with CYP2D6 inhibitors
Voriconazole	CYP2C19	ADRs: W&P Test not required	Hepatotoxicity
Warfarin	CYP2C9	ADRs: W&P Individualized dosing: W&P Test not required	Risk of bleeding
Warfarin	VKORC1	ADRs: W&P Individualized dosing: W&P Test not required	Risk of bleeding
Irinotecan	UGT1A1	ADRs: W&P Individualized dosing Test not required	Diarrhea, neutropenia
Azathioprine and 6-mercaptopurine	TPMT	ADRs: W&P Individualized dosing Test not required	Neutropenia
Capecitabine	DPD	ADRs: contraindication Test not required	Orodigestive – neutropenia
Maraviroc	CCR5	Nonresponse Test required	For CCR5-negative patients
Rasburicase	G6PD	ADRs: contraindication Test not required	Hemolysis in G6PD-deficient patients
Carbamazepine	HLA-B*1502	ADRs: W&P Test not required	Severe immunoallergic cutaneous
Abacavir	HLA-B*5701	ADRs: W&P	Hypersensitivity reactions
		Test not required	
W&P section of the summaria ADR: Adverse drug reaction;	zed product characteristics [104 EMEA: European Medicines Ag	.105]. iency: PM: Poor metabolizer; W&P: Warnings an	d precautions.

962

Pharmacogenomics (2009) 10(6)

future science group fsg

Becquemont L.Pharmacogenomics of adeverse drug reactions: practical applications and perspectives

PHARMACOGENOMICS

Johnson JA, Evans WE. (2002) Trends in Molecular Medicine 8:300

HLA typing: clinical significance Pharmacogenomics

Severe allergic or hypersensitivity reaction to drugs are common and preclude necessary treatment.

Association between allergy or hypersensitivity to a medication and HLA type.

HLA typing allows risk stratification of the patients.

Drugs associated to SJS and TEN

Antiepileptic agents: Carbamazepine Phenytoin; Phenobarbital; Lamotrigine Allopurinol; Nevirapine

Anti-inflammatories of oxicam family Sulfonamides

SJS: Stevens Johnson Syndrome TEN: toxic epidermal necrolysis

HLA and Drug	adverse reactions
HLA-B*5701	hypersensitivity to Abacavir
HLA-B*1502	carbamazepine induced SJS or TEN
HLA-B*5801	allopurinol induced SJS or TEN
HLA-DRB1*01	nevirapine
HLA-DRB1*07	ximelagatran
HLA-A29,B12,DR7	sulfonamides
HLA-A2,B12	oxicam
HLA-DQA1*0102	Lumiracoxib
SJS: Steve TEN: toxic	ens Johnson Syndrome : epidermal necrolysis

HIV infection treatment

HAART highly active antiretorviral therapy

- NRTI Nucleoside analogue Reverse Transcriptase Inhibitor
 - +
- NNRTI Non Nucleoside analogue RTI or
 - HIV Protease Inhibitors

Ziagen, Abacavir Sulfate: (15,cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1)

Ziagen, an oral medication taken twice daily, is a nucleoside analogue reverse transcriptase inhibitor (NRTI) and is taken in combination with other anti-HIV medications.

The combination helps to lower the amount of HIV found in the blood.

Allergic reaction to Abacavir

The allergy, frequently referred to as an abacavir hypersensitivity reaction (AHR), is a serious side effect that occurs in up to 8 percent of those taking the drug.

Symptoms, including fever, rash and shortness of breath, often worsen with continued use of the drug. These symptoms can be fatal, especially if the drug is stopped and then restarted.

Proportion of patients stopping ABC therapy in the first 6 weeks Before/after introduction of prospective HLA-B*5701 typing

DHHS Treatment guidelines for HIV-1 infection in Adults and Adolescents (12/01/2007 update):

HLA-B*5701 Testing - The Panel recommends HLA-B*5701 testing prior to initiating abacavir therapy to reduce the risk of hypersensitivity reaction (AI).

HLA-B*5701 + patients should not be prescribed abacavir (AI), and the positive status should be recorded as an abacavir allergy in the patient's medical record (AII).

When HLA-B*5701 screening is not readily available, it remains reasonable to initiate ABC with appropriate clinical counseling and monitoring for any signs of abacavir-associated hypersensitivity reaction (CIII)₃₈

Tegretol, carbamazepine USP: 5H-dibenz[b,f]azepine-5-carboxamide

Carbamazepine has both antiepileptic and psychotropic properties. Indications: Epilepsy Pain syndromes: Trigeminal neuralgia and glossopharyngeal neuralgia. Manic depressive illness unresponsive to lithium.

FDA alert 12/12/2007 recommends HLA-B*1502 typing before prescribing Carbamazepine to patients of Asian origin

SJS/TEN and HLA-B*1502 Allele

Retrospective case-control studies have found that in Chinese patients there is a strong association between the risk of developing SJS/TEN with carbamazepine treatment and the presence of HLA-B*1502.

The occurrence of higher rates of these reactions in countries with high freq. of B*1502 suggests that the risk may be increased in allele+ individuals of any ethnicity.

Chung et al. Nature 428, 486, 2004

WARNING

SERIOUS DERMATOLOGIC REACTIONS AND HLA-B*1502 ALLELE

SERIOUS AND SOMETIMES FATAL DERMATOLOGIC REACTIONS, INCLUDING TOXIC EPIDERMAL NECROLYSIS (TEN) AND STEVENS-JOHNSON SYNDROME (SJS), HAVE BEEN REPORTED DURING TREATMENT WITH TEGRETOL. THESE REACTIONS ARE ESTIMATED TO OCCUR IN 1 TO 6 PER **10,000 NEW USERS IN COUNTRIES WITH MAINLY CAUCASIAN** POPULATIONS, BUT THE RISK IN SOME ASIAN COUNTRIES IS ESTIMATED TO BE ABOUT 10 TIMES HIGHER. STUDIES IN PATIENTS OF CHINESE ANCESTRY HAVE FOUND A STRONG ASSOCIATION BETWEEN THE RISK OF DEVELOPING SJS/TEN AND THE PRESENCE OF HLA-B*1502, AN INHERITED ALLELIC VARIANT OF THE HLA-B GENE. HLA-B*1502 IS FOUND ALMOST EXCLUSIVELY IN PATIENTS WITH ANCESTRY ACROSS BROAD AREAS OF ASIA, PATIENTS WITH ANCESTRY IN GENETICALLY AT-RISK POPULATIONS SHOULD BE SCREENED FOR THE PRESENCE OF HLA-B*1502 PRIOR TO INITIATING TREATMENT WITH TEGRETOL. PATIENTS TESTING POSITIVE FOR THE ALLELE SHOULD NOT BE TREATED WITH TEGRETOL UNLESS THE BENEFIT CLEARLY OUTWEIGHS THE RISK

Variation in the prevalence of HLA-B*1502 ASIA.-

>15% of the population is pos. in Hong Kong, Thailand, Malaysia, and parts of the Philippines About 10% in Taiwan & 4% in North China. South Asians, including Indians, have intermediate prevalence of HLA-B*1502, 2-4% B*1502 is in <1% in Japan & Korea B*1502 is absent/low in non Asians (e.g., Caucasians, African-Americans, Hispanics, Mexicans and Amerindians).

Prior to initiating Tegretol therapy, testing for HLA-B*1502 should be performed in patients of populations in which HLA-B*1502 may be present.

In deciding which patients to screen, the given prevalence of B*1502 may offer a rough guide, keeping in mind the limitations of these figures due to wide variability in rates even within ethnic groups, the difficulty in ascertaining ethnic ancestry, and the likelihood of mixed ancestry.

Tegretol should NOT be used in B*1502 patients, unless the benefits clearly outweigh the risks. B*1502 - patients, are thought to have a low risk of SJS/TEN 44 B*1502 genotyping as a screening tool has important limitations and must never substitute for appropriate clinical vigilance and patient management.

Many *1502+ Asian patients treated with Tegretol will not develop SJS/TEN, and these reactions can still occur infrequently in HLA-B*1502- patients of any ethnicity.

www.fda.gov/Cder/drug/infopage/carbamazepine /default.htm

Genetic Architecture of Asthma and Allergic Diseases

ZYLOPRIM (allopurinol) : 1,5-dihydro-4H-pyrazolo [3,4-d]pyrimidin-4-one

Allopurinol is a xanthine oxidase inhibitor which reduces serum and urinary uric acid concentrations. Treatment of primary or secondary gout Patients with leukemia, lymphoma and other malignancies who are receiving cancer therapy which causes elevations of uric acid levels.⁴⁷ ZYLOPRIM SHOULD BE DISCONTINUED AT THE FIRST APPEARANCE OF SKIN RASH OR OTHER SIGNS WHICH MAY INDICATE AN ALLERGIC REACTION

In some instances a skin rash may be followed by more severe hypersensitivity reactions such as exfoliative, urticarial, and purpuric lesions, as well as Stevens-Johnson syndrome (erythema multiforme exudativum), and/or generalized vasculitis, irreversible hepatotoxicity, and, on rare occasions, death.

HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol.

Hung et al. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4134-9.

Study: 51 patients with allopurinol-SCAR and 228 controls:

135 allopurinol-tolerant subjects and 93 healthy subjects were genotyped for 823 SNPs in genes related to drug metabolism and immune response.

The initial screen revealed strong association between allopurinol-SCAR and SNPs in the MHC region, including BAT3 (encoding HLA-B associated transcript 3), MSH5 (mutS homolog 5), and MICB (MHC class I polypeptiderelated sequence B) (P <10⁻⁷. 49

HLA -A, B, C, DRB1 typing was performed.

HLA-B*5801 was present in 100%/ 51 patients with allopurinol-SCAR but only in 20 (15%) of 135 tolerant patients RR=580.3 ; p= 4.7 x 10⁻²⁴

and in 19 (20%) of 93 of healthy subjects RR= 393.51 p= 8.1 x 10⁻¹⁸

HLA - A*3303, Cw*0302, DRB1*0301 were in Δ with HLA-B*5801

HLA Alleles Is Associated With Lumiracoxib In Patients With Inflammatory Diseases

A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury

4378 SUBJECTS FROM 25 COUNTRIES WERE TYPED FOR DQA1*0102:

Caucasians (N=3557), Blacks (N=78), Hispanics (N=675) & others (N=68)

Results from follow-up of the genome-wide analysis of 67 SNPs to search for additional markers that associate with risk of liver enzyme elevations (peak ALT/AST > 3x U), showed strong DQA1*0102 carrier status.

Singer, Lewitsky et al, Nature Genetics, 2010:38. 632

HLA Alleles I	s Associated	With Lumiracoxib
In Patients	With Inflamm	natory Diseases
Liver Injury:	% Carriers	% Non-Carriers
Hepatocellular	76.5	45.9
Mixed	20.6	48.6
Cholestatic	2.9	5.4
	n=0 (01

OR for >3x U =5.8; >5x U=11.1; >8x U= 21.6;>10x U=24.1

DQA1*0102 patients freq by race: Caucasian 35.4%; Hispanic 21.2%; Black 57.7%; Other 38.7%

HLA Alleles Is Associated With Lumiracoxib In Patients With Inflammatory Diseases

A logistic regression model was applied with an indicator of liver enzyme levels as a dependent variable, variable number of copies of HLA as an independent variable, and sex, age, study as co-variants

DRB1*1501 yielded the most significant result among Hispanics (p=0.0007; OR=6), similar to that obtained from the whole analysis (OR=5).

This association with the increase in liver enzymes was stronger than the one of DQA1*0102, however, all DRB1*1501 carriers were also DQA1*0102,

...which one is the primary susceptibility allele? 53

HLA Alleles Is Associated With Lumiracoxib In Patients With Inflammatory Diseases

It is important to emphasize, that results were compred with HLA DQA1* typed patients taking Naproxen and Ibuprofen, with no HLA association at all

More studies are needed in patients from ethnic specific populations, taking Lumiracoxib for inflammatory diseases such as rheumatic diseases

The FDA will soon provide an alert for HLA typing in patients, before taking Lumiracoxib₄

HLA typing and Pharmacogenomics: It is already here!!

<u>http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmac</u> <u>ogenetics/ucm083378.htm</u>

FDA alert 12/12/2007 recommends HLA-B*1502 typing before prescribing Carbamazepine to patients of Asian origin.

 DHHS Treatment guidelines for HIV-1 infection in Adults and Adolescents (12/01/2007 update) recommends HLA B*5701 typing before prescribing Abacavir.

It is already here

From NEJM, Feb. 2008, 358 HLA-B*5701 Screening for Hypersensitivity to Abacavir. Mallal et al.

Pharmacogenomic Biomarkers for Prediction of Severe Adverse Reactions. M. Ingelman-Sundberg, 2009 (7 listed, 3 HLA alleles).

HLA AND PERSONALIZED MEDICINE

pharmacogenomics disease diagnostics immunotherapy infectious disease vaccines tumor vaccines

> http://www.pharmgkb.org PharmGKB (Pharmacogen Base)

GOALS OF PHARMACOGENOMICS

* To identify the functional genes or polymorphisms associated with the individual response to drugs

* To obtain personalized drugs

- * To improve de efficacy of disease therapeutics
 - * To avoid adverse drug reactions

* To select patients for clinical trials of new drugs and for better terapheutic strategies

* To design new drugs

Personalized Medicine

PERSONALIZED MEDICINE:THE FUTURE

GeneChip Analysis

16th INTERNATIONAL HISTOCOMPATIBILITY WORKSHOP COMPONENT: PHARMACOGENOMICS CO-CHAIRS: CLARA GORODEZKY & SUSIE LEFFELL

clarag@servidor.unam.mx; msl@jhmi.edu

Serious adverse reactions to drugs in association with certain HLA alleles have been confirmed in some ethnic groups, but have not been investigated in other populations. It is also likely that additional associations may be established for other drugs with increasing awareness of possible immunogenetic predisposition.

AIM: The aim of this study is to establish an ongoing registry for compilation of data on the incidence of the association of HLA alleles and/or other immunogenetic factors with adverse drug reactions in various populations.

PHRMACOGENOMICS AND CLINICAL PRACTICE

http://www.pharmgkb.org PharmGKB (Pharmacogen Base) "If it was not, because of the enormous variability among individuals, Medicine would be a science and not an art"

Sir William Osler 1849–1919